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Abstract We use some recent results on the existence of long cycles in leapfrog
fullerenes to establish new exponential lower bounds on the number of perfect match-
ings in such graphs. The new bounds are expressed in terms of Fibonacci numbers.
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1 Introduction

The central theme of research in fullerene graphs over the last two decades has been
a search for a graph-theoretical invariant that could be used as a predictor of fullerene
stability. A number of invariants has been proposed, examined, and tested, and none
of them were found satisfactory. The number of perfect matchings was among the
first candidates that were tried. It turned out that on its own it is not a very successful
predictor [1]. However, there is some evidence that certain derived invariants that take
into account the details of the local structure might be more relevant. Hence, the number
of perfect matchings continued to attract the attention of researchers, and this resulted
in a steady flow of results over the last couple of years. Most of those results have been
concerned with the lower bound on this quantity, and one can follow a progress from
constant [13] to linear [3,5,22] to exponential lower bounds [7,8,14,20]. The aim of
the present paper is to further improve the lower bounds for the class of fullerene
graphs known as the leapfrog fullerenes. This will be achieved by using some new
results on the existence of long cycles in such graphs. Those results have been a part
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of the recent progress toward establishing the conjectured hamiltonicity of fullerene
graphs [17,14,15]. The lower bounds in question will follow by observing that such a
long cycle corresponds to a catacondensed benzenoid of particular type whose number
of perfect matchings can be bounded from below in terms of Fibonacci numbers.

2 Preliminaries

In this section we introduce the classes of graphs considered in the present paper and
prove some auxiliary results. For graph-theoretic terms not defined here we refer the
reader to any of standard monographs such as, e.g., [12], [21] or [16].

All graphs considered here are simple, finite, and connected. For a given graph G
we denote its vertex set by V (G) and its edge set by E(G). A matching M in G is
a collection of edges of G such that no two edges from M have a vertex in common.
A matching M is perfect if every vertex from V (G) is incident with some edge from
M . The number of all different perfect matchings in G we denote by �(G).

A fullerene graph is a planar, 3-regular and 3-connected graph 12 of whose faces
are pentagons and any remaining faces are hexagons. If no two pentagons in a fullerene
graph G share an edge, we say that G is an isolated pentagon (IP) fullerene.

It is well known that fullerene graphs on p vertices exist for all even p ≥ 24 and
for p = 20 [11]. Similarly, IP fullerenes on p vertices exist for all even p ≥ 70 and
for p = 60 [13]. The smallest fullerene, C20 : 1, is the dodecahedron; the smallest
IP fullerene is the buckminsterfullerene C60 : 1812. We refer the reader to Ref. [10]
for more background information on fullerene graphs.

The buckminsterfullerene can be obtained from the dodecahedron via the
so-called leapfrog transformation. The leapfrog transformation of a planar graph
G is defined as the truncation of its dual [9]. We write it as Le(G) = T r(Du(G)).
Applied to dodecahedron it gives us the familiar truncated icosahedron structure of the
buckminsterfullerene.

It is not difficult to see that Le(G) has three time the number of vertices of G.
Furthermore, if G is a fullerene, then Le(G) is a fullerene. Finally, Le(G) is always
an IP fullerene.

It is obvious from the definition that the leapfrog transformation is invertible. Hence,
for a given leapfrog fullerene G we can always find its parent fullerene Le−1(G).

The leapfrog fullerenes have many remarkable properties. We mention here two
that are relevant for our aims.

Theorem A [8]
Let G be a leapfrog fullerene on p vertices. Then �(G) ≥ 2p/8. ��
Theorem B [17]
Let G be a fullerene on p vertices. Then the leapfrog fullerene Le(G) has a Hamilton
cycle if p ≡ 2(mod4), and contains a long cycle missing out only two adjacent vertices
if p ≡ 0(mod4). ��

The long cycles of Theorem B are worth looking at in more detail. It turns out that
they arise via the leapfrog transformation from induced trees in the parent
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fullerene G. The existence of such trees of a given size follows from the fact that
all fullerenes are cyclically 5-edge connected [6,19] via an old result of Payan and
Sakarovich [18]. Moreover, the area enclosed by those cycles in a Schlegel diagram
of Le(G) is a topological disk made of hexagons that are either disjoint or share a
whole edge; hence, it is a benzenoid graph. A benzenoid graph is catacondensed if
no vertex is shared by more than two hexagons. We refer the reader to [2] for more
information on benzenoid graphs.

Lemma 1 Let T be an induced tree in a fullerene G. Then the hexagons in Le(G)

corresponding to the vertices of T form a catacondensed benzenoid.

Proof A leapfrog fullerene Le(G) on p vertices contains p/2−10 hexagons. Exactly
p/3 of them arise from the vertices of the parent fullerene G via the dualization/
truncation procedure, while the remaining ones correspond to the hexagons in the par-
ent fullerene. Moreover, the “new” hexagons share an edge in Le(G) if and only if the
corresponding vertices are adjacent in G. (Hexagons corresponding to the old hexagons
are isolated in Le(G); that is also the reason that makes Le(G) an IP fullerene.) Let
T be an induced tree in G and Le(T ) the hexagons in Le(G) corresponding to the
vertices of T . Then the inner dual of Le(T ) is isomorphic to T , hence it is a tree, and
then Le(T ) must be a catacondensed benzenoid. ��

The set Le(T ) has an additional important property: it is nowhere straight, i.e., it
does not contain a straight chain of three hexagons as a subgraph. (An alternative term
for such benzenoids could be anthracene-free.) In a nowhere straight catacondensed
benzenoid in every non-terminal hexagon we have either a branching or a kink.

Lemma 2 Let T be an induced tree in a fullerene G. Then the catacondensed ben-
zenoid Le(T ) is nowhere straight.

Proof A vertex v ∈ V (T ) can be of degree 1, 2, or 3 in T . It is clear from the
construction that a vertex of degree 1 in T gives rise to a terminal hexagon in Le(T ).
Similarly, a vertex of degree 3 in T gives a branching hexagon in Le(T ). It remains
to show that a vertex of degree 2 gives a kink hexagon. But this is again obvious from
the construction, as shown in Fig. 1. Hence, Le(T ) cannot contain a straight chain of
three hexagons, and the claim follows. ��

It is well known that an unbranched catacondensed benzenoid (i.e., a hexagonal
chain) has the largest possible number of perfect matchings exactly when it is nowhere
straight. Moreover, a nowhere straight hexagon chain with h hexagons has exactly
Fh+2, where Fh+2 denotes the h + 2-nd Fibonacci number. We will show that any
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Fig. 1 With the proof of Lemma 2
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Fig. 2 The smallest branched
nowhere straight catacondensed
benzenoid
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Fig. 3 A terminal hexagon is adjacent to a non-branching hexagon

nowhere straight catacondensed benzenoid on h hexagons contains at least that many
perfect matchings.

Lemma 3 Let Th be a nowhere straight catacondensed benzenoid on h hexagons.
Then �(Th) ≥ Fh+2.

Proof If Th is unbranched, then �(Th) = Fh+2 and we are done. Suppose, then, that
Th has at least one branching hexagon. The smallest such benzenoid is T4, shown in
Fig. 2. It is easy to see that �(T4) = 9 ≥ 8 = F6. Now we proceed by induction on
h, and suppose that the claim of Lemma is valid for all nowhere straight catacondensed
benzenoids with at most h hexagons. Let Th+1 be an arbitrary nowhere straight cata-
condensed benzenoid with h + 1 hexagons. Then it must contain at least two terminal
hexagons. If one terminal hexagon is adjacent to a non-branching hexagon NB, we
have a situation shown in Fig. 3. It follows that

�(Th+1) = �(R ∪ N B) + �(R).

Since both R and R∪N B are nowhere straight catacondensed benzenoids with at most
h hexagons, we have �(Th+1) ≥ Fh+2 + Fh+1 = Fh+3, and the claim of Lemma
follows.
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Fig. 4 A terminal hexagon is adjacent to a branching hexagon

It remains to consider the case when all terminal hexagons are adjacent to branching
hexagons. The situation is shown in Fig. 4. We have

�(Th+1) = �(R1 B R2) + �(R1) · �(R2).

The first term on the right-hand side is at least Fh+2, by the inductive hypothesis.
Let us consider the second term. By the inductive hypothesis, �(Ri ) ≥ F|Ri |+2, where
|Ri | denotes the number of hexagons in Ri , i = 1, 2. Since R1 and R2 together have
exactly h −1 hexagons, and neither of them is empty, the claim will follow if we prove
that Fk Fn−k ≥ Fn−2 for all k ≥ 2, n ≥ k + 2. The cases n = 4 and n = 5 are
easily verified. Now suppose that Fk Fm−k ≥ Fm−2 is valid for all m ≤ n and consider
Fk Fn+1−k :

Fk Fn+1−k = Fk(Fn−k + Fn−1−k) = Fk Fn−k + Fk Fn−1−k .

By the inductive hypothesis, the first term in the right-hand side is at least Fn−2, the
second one is at least Fn−3, and hence their sum is at least Fn−1. This completes the
step of induction and verifies that �(R1) ·�(R2) ≥ Fh+1. But then �(Th+1) ≥ Fh+3,
and the Lemma is proved. ��

3 Main results

Now we can formulate and prove our main result.

Theorem 4 Let G p be a leapfrog fullerene on p vertices. Then

�(G p) ≥ F�p/4	+1 + 1.
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If p is divisible by 4, then

�(G p) ≥ Fp/4+1 + p/2.

Proof Let us first consider the case p ≡ 2 (mod 4). It follows from Theorem B that
G p contains a Hamiltonian cycle C . In Ref. [17] it was shown that C is the border
of a tree of hexagons Le(T ) that correspond to the vertices of some induced tree T
in Le−1(G p) under the leapfrog transformation. By Lemma 2, Le(T ) is a nowhere
straight catacondensed benzenoid on (p − 2)/4 hexagons. Now, by Lemma 3, Le(T )

contains at least F(p−2)/4+2 = F
p/4�+2 = F�p/4	+1 different perfect matchings,
and each of them is also a perfect matching of G p. An additional perfect matching is
formed by the edges of E(G p) − C , and the claim follows.

Suppose now that p ≡ 0 (mod 4). Then, by Theorem B, G p contains a cycle C of
length p − 2 that misses out exactly two adjacent vertices. Denote those two vertices
by u and v, and the edge connecting them by e. Again, the cycle C is the boundary
cycle of a nowhere straight catacondensed benzenoid Le(T ) generated by the leapfrog
transformation from an induced tree T in Le−1(G p). Since |C | = p − 2, Le(T )

contains (p − 4)/4 = p/4 − 1 hexagons; hence it has at least Fp/4+1 = F�p/4	+1
different perfect matchings. We note that all of those perfect matchings must contain
the edge e. On the other hand, it is known that for any edge e in a fullerene graph
on p vertices there are at least p/2 perfect matchings that do not contain e [5]. The
claim now follows by observing that a perfect matching of G p either contains e and
is counted by F�p/4	+1, or does not, and in that case is counted by p/2. ��

The lower bound we have just established compares favorably with the one from
Theorem A. It is well known that the asymptotic behavior of Fibonacci numbers is

given by Fn ∼ φn , where φ = 1+√
5

2 is the golden section. Hence �(G p) is bounded
from below by a quantity proportional to 4

√
φ

p. Since 4
√

φ ≈ 1.12784 >
8
√

2 ≈
1.09051, it follows that the bound of Theorem 4 is better.

The lower bound from Theorem 4 can be slightly improved for those leapfrog
fullerenes on p ≡ 0 (mod 4) vertices whose parent fullerenes have isolated pentagons.
For this we need a recent result by Kutnar, Marušič and Vukičević:

Theorem C [15]
Let G p be a leapfrog fullerene on p ≡ 0 (mod 4) vertices such that Le−1(G p) has
isolated pentagons. Then the vertex set of G p can be partitioned into two sets, S and
S′, such that S induces a cycle of length 6, and S′ are vertices of a cycle of length
p − 6. ��

The above result is slightly weakened Theorem 3.5 from reference [15].

Theorem 5 Let G p be a leapfrog fullerene on p ≡ 0 (mod 4) vertices such that
Le−1(G p) has isolated pentagons. Then G p contains at least 2Fp/4 + 1 different
perfect matchings.

Proof It follows by the same arguments as in the previous cases that S′ are vertices
of the boundary cycle of a nowhere straight catacondensed benzenoid on p/4 − 2
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hexagons. By Lemma 3, such a benzenoid contains at least Fp/4 different perfect
matchings. As each of them can be combined with either of 2 perfect matchings of
the cycle C6 induced by S, we have at least 2Fp/4 perfect matchings in G p. The claim
now follows by observing that the p/2 edges not contained in the cycles defined by the
partition form a perfect matching different from all 2Fp/4 already constructed ones.��
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6. T. Došlić, Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages, J. Math. Chem. 33, 103

(2003)
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